MOOCs have been around for a couple years now, and they have even started to permeate into the biomedical and health informatics world. I am aware of at least two informatics-related MOOCs (one from Georgia Institute of Technology and the other from University of Minnesota) as well as another that focuses on healthcare analytics. In addition, a colleague from Australia has been fashioning the ONC health IT curriculum into one giant MOOC, although it is not a course in the sense of one registering for it and having criteria for successfully completing it.
We are also starting to see some research findings about MOOCs. A first analysis was recently published about a MOOC from Massachusetts Institute of Technology (MIT) [1]. The course studied was 6.002x, an introductory course in circuits and electronics offered through edX, one of the two large US-based consortia offering MOOCs. Typical of MOOCs, about 155,000 people registered for the course and about 7000 completed it. This is still an impressive number completing the course, and the research noted factors that kept students engaged and successful. One of the most prominent factors was interaction with fellow students in the non-required online discussion forums. The researchers also determined that students spent the most time in online lectures when learning materials but most often referred to the online textbook when completing exams and browsed the discussion forums for help in completing homework assignments.
Other research in the same issue of the journal where this paper was published looked at handling some of the challenges of large-scale online education, such as grading of essay materials [2] and preventing cheating in these types of courses [3]. One approach to essay grading, highly controversial, is automated grading that uses machine learning approaches, while another approach uses "calibrated peer review" among participating students.
At this point in time, MOOCs have not yet led to true disruptive innovation in an industry (higher education) that has maintained resistance to such innovation, although the originator of the concept of disruptive innovation believes this will happen soon [4]. Perhaps the development that comes closest to disrupting higher education is the launching of a $6600 master's degree in computer science by Georgia Institute of Technology [5]. This program does not replace the institution's residential $40,000 master's program. But if successful, it will demonstrate a possible pathway to high-quality higher education that is significantly less expensive than conventionally delivered education.
In our OHSU graduate program in biomedical informatics, we have found that distance learning's attributes are more about the flexibility and the reach of our educational program across the planet than lowered cost. We consider it important for us to still provide the value of a comprehensive higher education program, which includes:
- An up-to-date curriculum based on a solid foundation
- Faculty who are international leaders in research and practice
- Ability to find and carry out an internship or practicum experience
- Career development and advising
- Connections to industry and others in the field
There is no question that online education delivery will continue to grow, and soon start to permeate highly resistant fields, such as medicine [6]. As with many technology-related endeavors, I believe that the most likely models to emerge will be hybrid models, i.e., those that make use of resources like MOOCs but still offer comprehensive educational experiences. I can easily see institutions of higher education licensing or otherwise using MOOCs in their educational offerings, with the institution filling in the additional value required for a complete education.
These benefits of MOOCs will have the potential to lower costs and introduce efficiencies, but probably not to the extent of widespread sub-$10,000 master's degrees. There will be other value, however, such as the reach and flexibility of online learning. Perhaps the best of all worlds will allow higher education to focus on other activities it can perform well, such as personal and career development as well as exposure to "real world" work environments.
References
1. Breslow L, Pritchard DE, DeBoer J, Stump GS, Ho AD, and Seaton DT, Studying learning in the worldwide classroom: research into edX’s first MOOC. Research and Practice in Assessment, 2013. 8. http://www.rpajournal.com/studying-learning-in-the-worldwide-classroom-research-into-edxs-first-mooc/.
2. Balfour SP, Assessing writing in MOOCs: automated essay scoring and calibrated peer review. Research and Practice in Assessment, 2013. 8. http://www.rpajournal.com/assessing-writing-in-moocs-automated-essay-scoring-and-calibrated-peer-review/.
3. Meyer JP and Zhu S, Fair and equitable measurement of student learning in MOOCs: an introduction to item response theory, scale linking, and score equating. Research and Practice in Assessment, 2013. 8. http://www.rpajournal.com/fair-and-equitable-measurement-of-student-learning-in-moocs-an-introduction-to-item-response-theory-scale-linking-and-score-equating/.
4. Christensen CM and Horn MB, Innovation Imperative: Change Everything, New York Times. November 1, 2013. http://www.nytimes.com/2013/11/03/education/edlife/online-education-as-an-agent-of-transformation.html.
5. Lewin T, Master’s Degree Is New Frontier of Study Online, New York Times. August 17, 2013. http://www.nytimes.com/2013/08/18/education/masters-degree-is-new-frontier-of-study-online.html.
6. Mehta NB, Hull AL, Young JB, and Stoller JK, Just imagine: new paradigms for medical education. Academic Medicine, 2013. 88: 1418-1423.
No comments:
Post a Comment